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ABSTRACT 

The advent of the Web has brought an unprecedented amount of 
information together with a large, diverse set of users.  Online 
users are performing a wider variety of tasks than ever before.  
For example, not only is the Web being used to search 
conventional databases like Lexis/Nexus, it is also being used to 
broker Beanie Babies®.  Today’s common information seeking 
metaphors (i.e., keyword search and hypertext) cannot be 
expected to support all these new tasks well.   
We characterize a new user behavior called opportunistic 
exploration.  We show how it is significantly different than both 
browsing and searching.  A novel visual metaphor for 
opportunistic exploration, an aquarium, is presented.  In an 
aquarium users may explore a large corpus at any level of 
granularity.  The aquarium’s implementation is discussed and 
demonstrated on a collection of 12,000 consumer products.   The 
implementation automatically controls granularity based on the 
history of operations performed by a user. 
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1. INTRODUCTION 
You have to buy a wedding present for cousin Edith, again.  
You’re not sure what to get; you don’t know her too well.  You 
want something classy, to reflect your good taste; something a bit 
unusual but not too unusual.  Maybe red, Czech crystal, or a 
ceramic picture frame.  You will know it when you see it.  While 
you are shopping for cousin Edith, you also buy a shirt and an 
audio CD for yourself, though you didn’t plan to.  You began the 
shopping trip with an ill-defined goal: something classy and 
unusual.  Other interests (shirts and music) arose during the 

course of the trip.  
Compare this behavior with what is currently supported by 
today’s online stores.  Keyword search cannot be used to find 
“classy” and “unusual” items.  Even if items were tagged with 
these words, the items probably won’t be what you consider 
classy and unusual. 
Today’s online stores are well suited for finding information that 
can be specified in a common vocabulary (e.g., boy’s Schwinn 
bicycle).  That is, they are good for finding items if you know 
what items you are looking for.  This is not shopping; this is 
information retrieval and order entry.  Nearly 50% of Americans 
consider shopping a recreation, not a task [9].  In reality, shoppers 
often do not know what they are looking for.  
People have multiple, overlapping interests.  When they go 
shopping, one interest is often initially given a high importance.  
For example, an interest in Edith’s wedding may prompt a trip to 
the mall.  The primary goal may be a wedding present, yet many 
other interests are still present, ranging from short-term (e.g., need 
more shirts), to long-term (e.g., tastes in music), to demographic 
(e.g., feed and clothe children).  To exploit this fact, retailers 
arrange shelves and store layout so that shoppers are exposed to 
many interesting products.  Over a century ago the Chicago 
retailer Marshall Fields recognized this when he said that he 
wanted to sell people things that they didn’t know existed ten 
minutes earlier.  He was appealing to their multiple, ill-defined 
interests, rather than their immediate goals. 
We call the type of behavior exemplified by shoppers 
opportunistic exploration.  The goal of our research is to develop 
new metaphors which support opportunistic exploration online.  
In this paper we use retail shopping as an example domain.  In the 
next section we characterize opportunistic exploration.  
Subsequent sections present a novel interface metaphor which 
supports opportunistic exploration, and the underlying algorithms 
which govern our implementation of the metaphor.  In the 
discussion section we differentiate opportunistic exploration from 
the two best known online behaviors: browsing and searching. 

2. OPPORTUNISTIC EXPLORATION 
The main characteristics of opportunistic exploration are: 

•  Users have multiple, overlapping interests.   

•  Users view many diverse items but examine few in detail. 

•  Exposure to items affects interests.  A latent interests may be 
activated when users are exposed to items which appeal to 
that interest.  Similarly, an active interest may be subdued if 
users are not soon exposed to relevant items. 
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•  Interests may change suddenly due to exposure or whim. 

•  Navigation must be simple.  The casual nature of 
opportunistic exploration requires it to demand little effort 
on the part of users. 

Overall, to be sustained or repeated, opportunistic exploration 
must be informative and enjoyable.  As a recent study of online 
stores put it, diligence is not a virtue retailers should expect from 
their customers [11].  If it isn’t interesting and enjoyable, 
customers will leave. 
A day at an amusement park is an example of this behavior.  
During the course of the day a visitor would like something 
interesting to eat, have fun, get scared, and maybe buy a funny 
hat.  There is no specific goal, just general interests on the part of 
the visitor, and opportunities presented by the park. 

3. THE AQUARIUM METAPHOR 
In this section we describe our new visual metaphor for 
opportunistic exploration.   
Imagine a dozen interesting products floating all around you.  The 
products move slowly, almost randomly, like fish in an aquarium.  
Occasionally some products leave and new ones appear.  Users 
may passively watch the aquarium change, or they may interact 
with it.  (See Figure 1.) 
Users interact with a product by performing a positive or a 
negative operation on it.  A positive operation changes the 
aquarium to contain more items like the one selected (i.e., more 
like this).  The change is gradual, so as not to disorient users.  

New products come to the user as the user watches.  A negative 
operation on a product results in less like that selected (i.e., less 
like this).   
Users may also interact with the aquarium as a whole.  A positive 
operation on the aquarium changes it to contain different products 
which are similar to those it currently contains (i.e., more like 
these).  A negative operation changes it to different products 
which are unlike the current ones (i.e., less like these). If no 
operation is performed for a period of time, then the aquarium 
gradually changes by itself to show a diversity of products.   
With this metaphor, there is no complex information structure for 
users to understand.  Users need only be concerned with the small 
set of products currently on display.  Cognitive overhead is very 
low.  Products come to the user, rather than the user going to the 
products.  Products and categories do not have a “location,” thus 
users never ask questions like, “Are boy’s mitts in sporting goods 
or toys?”, or “Is the toy department to my left or my right?” 

3.1 Governing Parameters 
A small set of parameters govern the aquarium.  Change period 
and add rate determine how fast the set of products in the 
aquarium changes.  Change period is the maximum amount of 
time between operations.  If a user does not perform an operation 
within this period, then the aquarium changes automatically.  The 
add rate is the time between the introduction of new products.  
For example, if a user operation results in the introduction of two 
new products,  then add rate determines how quickly one appears 
after the other. 

Figure 1:  A still shot of an aquarium of consumer products. 
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Each product in the aquarium simultaneously represents an 
instance (i.e., the product) and multiple categories.  A Ken Griffy 
Jr. baseball mitt represents baseball, team sports, ball sports, and 
sporting goods.  A 5"x7" crystal picture frame represents crystal, 
pictures, and frames. 
The breadth parameter governs the meaning of “more” and “less” 
in user operations.  Large breadth causes the aquarium to look for 
large categories (i.e., categories containing many products), while 
small breadth causes it to look for small categories.  For example, 
a positive operation on a baseball mitt while breadth is high 
results in more sporting goods, while the same operation while 
breadth is low results in more baseball mitts.  We have developed 
an algorithm for automatically regulating breadth based on a 
user’s operation history.  It is presented in the next section. 
The core problem in governing the aquarium is product similarity.   
What does it mean for two products to be similar?  In our 
metaphor, similarity is governed by three, competing measures: 
1. Corpus similarity measures similarity between the 

descriptions of products.  The set of products available to the 
aquarium defines a corpus.  The corpus contains text 
descriptions and photographs of products.  Corpus similarity 
applies conventional information retrieval techniques [10] to 
product descriptions to determine similarity. (See the 
implementation section for details.)  Corpus similarity is the 
same for all users, but varies by product collection. 

2. Profile similarity measures affinity between products and 
users.  Buying history and past operations can be used to 
develop a profile of each user.  Profiles estimate users’ 
interests and the relative interests between products.  For 
example, if I buy flowers once a year and audio CDs once a 
month, then I have a higher interest in CDs than in flowers.  
Profile similarity varies per user. 

3. Demographic similarity measures affinity between products 
and demographic groups.  Customer demographic databases 
estimate a user’s interests based on simple statistics about the 
user (e.g., age, sex, marital status, address).  The databases 
also estimate relative interests between products.  For 
example, 60% of the male consumers interested in diapers 
are  also interested in beer, but not vice versa.  Demographic 
similarity is the same for large groups of users, but varies 
between demographic groups. 

Each of these similarity measures is embodied in a separate 
product affinity engine and each engine is given a weight.  
Conceptually, the aquarium contains an array of product affinity 

engines, each competing for screen space.  (See Figure 2.)  The 
weights, Wc, Wp, and Wd, determine how much space each 
receives. 

3.2 Support for Opportunistic Exploration 
The aquarium metaphor is simple and yet powerful enough for 
opportunistic exploration of large consumer product spaces.  The 
metaphor supports multiple, overlapping interests by considering 
the immediate interests based on the last few products selected 
(corpus), long-term interests (profile) and demographic interests.  
The absence of a prominent information structure and the low 
cognitive overhead of recognizing photographs, allow users to 
scan many products in a short period of time.    

4. IMPLEMENTATION 
This section presents our implementation of corpus similarity and 
the operations that users may perform.  The main goals of our 
implementation are to: 
1. Perform well on standard Wintel machines using off-the-

shelf graphics hardware. 
2. Change breadth quickly enough so that users may get to 

products of interest before their interest wanes. 
3. Display a diverse collection of products so that users may 

quickly change interests. 
These last two goals conflict.  If we allow the user to move to a 
small collection too rapidly, then we lose the opportunity to 
display diverse products (e.g., cross-sell).  If we display diverse 
products for too long, then the user cannot quickly reach a small 
collection of interest.  Our approach is to automatically calculate 
breadth based on user operations, and to change breadth 
gradually.  Initially breadth is very high.  As a user makes choices, 
breadth may decrease and allow the user to focus on certain 

products.  This gives us time to display diverse products, while 
allowing the user to get where they want to go.  If a user makes 
erratic choices, then breadth is increased. 
Given breadth, changes in the aquarium become an information 
retrieval (IR) problem.  The standard IR problem is, given a query 
q, to determine the set of documents which match q: 
   {d|  match(q,d) > t}, where t is some threshold. 

weight(w) = (–1 + 2 ∗  breadth) ∗  DF(w) +   
                    (1 – breadth) 

Corpus 
similarity 

Profile 
similarity 

Demographic
similarity 

User 
operations 

Determine 
new products 

more p1 
less p2… 

Wc 

Wp 

Wd 

add p3 
add p4… 

Figure 2: Competing, weighted relevance measures. 
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Figure 4: Keyword weight, document frequency and breadth. 

When queries and documents share a common representation (as 
in the vector model of IR [16]), then match(q,d) reduces to a 
similarity metric sim(q,d).  Our implementation uses the vector 
model, and a similarity function based on dynamic keyword 
weights. 
The free text of readily available product descriptions are reduced 
to sets of keywords (e.g., Figure 3).  We use sets, rather than term 
frequency, because we found that the writing styles of retailers 
varies greatly.  This caused frequencies to weight terms by 
retailer, rather than the nature of the product being described.  We 
assume that users are more interested in the product than the 
retailer, so we use sets to remove the retailer bias.1 
A thesaurus is used to augment and normalize keyword sets.  We 
found that part of the thesaurus must be built manually.  Terms 
used by retail marketeers simply are not available in commercial 
thesauri, and product descriptions are too short to allow automatic 
generation of a thesaurus.  For example, in the jargon of retail 
apparel, a sneaker is a shoe and a skort is both a skirt and a pair of 
shorts.  The product collection we are currently using contains 
12,000 products from four vendors; 3,000 keywords describe the 
products.  The keyword sets contain an average of nine keywords, 
with a standard deviation of 2.5.   

4.1 Term Weights 
The similarity function we use is the inverse of the absolute value 
of the difference in the sums of keyword weights: 
Special considerations are given to zero sums and zero 
differences.  Although the IR community has developed many 
similarity functions over the years, the main reason we use this 
one is because of its high speed. 
The weight given to a keyword at run-time is a function of 
document frequency (DF) and breadth.  The document frequency 
of a word is the number of products in a corpus that are described 

                                                                 
1 This assumption is weakened as companies begin to organize 

themselves around consumer activities, rather than products.  
For example, if you are interested in home gardening, then 
Smith & Hawken probably has many products of interest.  See 
[6]. 

by the word.  When breadth is high, weight is proportional to DF 
so that words with high DF, namely, large product categories, 
have high relevance.  When breadth is low, weight is inversely 
proportional to DF so that small categories become most relevant.  
(See Figure 4.)  The aquarium creates smooth changes in weights 
as breadth varies using the following function:2 
DF is static per corpus.  The problem of automatically supporting 
navigation through a product space then becomes determinining 
breadth.  Our implementation of breadth is conceptually based on 
a 2.5D metaphor of a corpus [20].  In this metaphor, keywords are 
arranged on a 2D plane such that the distance between two words 
is proportional to the frequency that the words appear together in 
the same documents.  That is, related words are close to each 
other.  Altitude is then added to the 2D map such that altitude is 
proportional to DF.  Large categories, denoted by frequent 
keywords, appear as peak and small categories, denoted by 
infrequent words, as valleys. 

4.2 Automatic Determination of Breadth 
Based on User Moves 
To determine breadth, we examine a user’s past few moves. We 
take the products selected in positive operations, plot them on our 
2.5D map, and examine the user’s path.  Breadth is then: 

•  inversely proportional to the degree to which the user is 
moving in a consistent direction, 

•  proportional to speed (i.e., 2D distance per move), and 

•  proportional to altitude. 
These three factors are weighted to determine breadth: 

        breadth = w1 ∗  1/direction + w2 ∗  speed +  
                        w3 ∗  altitude  

We estimate direction as the number of words that recent moves 
have in common, speed as the number of words in the symmetric 
difference between consecutive moves, and altitude as the DF of 
common words.  Let mi be the keyword set of the product selected 

                                                                 
2 Breadth and DF are normalized to be in [0,1]. 

Figure 3: An example product whose keyword set is: 
{clear, baby, crystal, picture, frame, frost}. 
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in the i-th move, and n be the number of past moves to examine:3 

We have found that altitude is the best indicator of breadth, and 
thus weight it twice as much as direction and speed.  Also, we 
have found that examining only three past moves (n=3) is 
sufficient.  Large values of n do not allow for rapid changes in 
users’ interests. 

4.3 User Operations 
The implementation of the aquarium includes the usual navigation 
operations: back (undo), forward (redo) and home.  A keyword 
entry form is also provided to allow users to directly search for a 
given category.  The main user operations are: 

•  more(p).  Show products like p. 

•  much-more(p).  Show products much more like p. 

•  less(p).  Show products less like p. 

•  much-less(p).  Show products much less like p. 

•  mix.  Show different but similar products. 
More(p), the positive user operation, is the only one that affects 
breadth.  A user’s “moves” are a sequence of more(p) operations.  
Much-more(p) is implemented simply as two consecutive 
more(p) operations. 
The implementation of more(p) has two steps: 
1. Find products similar to p, and 
2. Display a diverse collection of these products. 
The first step uses the keywords of p, and the weight and 
similarity functions defined earlier.  The second step uses the 
similarity function to measure diversity.  A maximum similarity 
threshold (t) is calculated.  The threshold is inversely 
proportional to breadth.  The product most similar to p is 
displayed.  Then, the product q with the highest similarity to p 
such that the similarity between q and each product displayed 
does not exceed t, is displayed.  This last step is repeated until the 
display is full.   
Less(p) is implemented much like relevance feedback in 
information retrieval systems.  The weights of the keywords of p 
are decreased a fixed amount and the set of products to display is 
recalculated.  Much-less(p) is simply two consecutive less(p) 
operations. 
The mix operation may be invoked by the user, and is 
automatically invoked if no operation is performed for a certain 
amount of time.  This operation decrements the maximum 

                                                                 
3 For clarity, the normalization of these values is not shown. 

similarity threshold, and then performs more(p) where p is the 
operand of the most recent positive operation. 
Finally, users may directly manipulate breadth and keyword 
weights.  The user interface includes a slider depicting breadth.  
The user need not change the slider, since breadth is 
automatically governed by past moves.  However, users may 
directly set breadth using the slider. 
The five keywords with the highest weights are arranged along 
the side of the screen.  A word’s distance from the bottom of the 
screen is proportional to its weight.  Users may drag words up or 
down to directly set their weight.   

5. DISCUSSION 
When we began this work, we considered whether opportunistic 
exploration is more like browsing or searching.  We concluded 
that it is fundamentally different than both, and thus worth 
investigating.   
Searching is characterized by careful examination of items in 
pursuit of a goal.  Most all online stores support search.  Users 
must enter keywords which describe their goal, and have the 
system do the searching for them.  Also, most online stores 
organize their products in a fixed hierarchy.  This allows users to 
manually search for items by examining the categories and 
products in the hierarchy. 
Browsing is the other common online behavior.  When browsing, 
users move leisurely along a predefined path.  For example, 
browsing a bookstore is to casually moves through the aisles, 
examining some small subset of the items available.  Similarly, 
browsing the Web means following predefined hyperlink path, 
without carefully reading every page. 
Both browsing and searching can be disorienting when navigating 
large product spaces.  Searching is disorienting because users are 
never afforded a view of the space; rather, they jump from subset 
to subset via a search engine.  Browsing, and specifically 
hypertext browsing, can be disorienting because of the sudden 
changes between pages [2].  Most online spaces, including stores, 
support both searching and browsing.  However opportunistic 
exploration is not well-supported by either.  Searching does not 
expose users to enough items, while browsing confines users to 
predefined paths.  Lastly, both keyword search and hypertext 
browsing have a high cognitive overhead due to their textual 
nature. 
Customer exposure to a variety of products is fundamental to 
retail. As commerce moves from physical retail spaces to virtual 
spaces, the goals of consumers and retailers largely remain the 
same while the constraints on approaches to satisfying these goals 
change drastically.  Two major constraints on physical retail are 
shelf space and the cost of changing a store’s layout.  Both of 
these constraints are greatly relaxed in virtual stores. 
Relaxing space constraints allows online stores to change their 
layout every day, for every customer, or even every few seconds.  
Shelf space is no longer constrained by walking speed.  While 
large physical stores can effectively display about 50,000 items, 
we expect online stores to soon display millions of items from all 
over the world.4 
                                                                 
4 Shopping.com and Netmarket.com already have a million items 

online. 
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Relaxing time constraints allows online stores to be used in ways 
that physical stores never were.  A 3-minute virtual shopping trip, 
to see what is new from your favorite vendors, becomes possible.  
Online stores may also be browsed passively, while shoppers are 
engaged in other activities, much like one “watches” TV while 
reading a newspaper. 

5.1 Related Work 
For nearly 40 years researchers have recognized the Gestalt 
powers of users, and that many information seeking tasks will 
always be ill-defined [7].  Opportunistic exploration of large, 
online spaces can be viewed as an ill-defined information retrieval 
problem or as an information visualization [1] problem which 
relies on the Gestalt abilities of users.  Historically information 
retrieval has focused on producing the few closest matches to a 
given query.  That is, none of the underlying information structure 
is exposed for users to explore, and users have access to a very 
small subset of objects at a time.  In effect, a keyword search 
reduces millions of documents to the few most relevant 
documents in seconds. 
Information visualization, on the other hand, has focused on 
exposing large information structures that users can navigate in 
intuitive ways.  Users have easy access to all objects in a 
collection.  Information visualization abstracts information to the 
point where users can find patterns and get around on their own.  
We view our work as the best of both approaches, applied to a 
new problem.  We use the robustness and scalability of statistics-
based information retrieval to aid users in navigation, and the 
accessibility of information visualization to allow uses to 
navigate. 
Rabbit [19] was an early, intelligent database assistant that aided 
users in formulating queries.  As with our system, Rabbit assumed 
that users lacked expert knowledge of the corpus being used, and 
that users were performing ill-defined tasks.  Users interactively 
constructed descriptions of a target instance by criticizing 
successive exemplars.  While the goals and approach of Rabbit 
and our work are very similar, the implementations differ greatly.  
Rabbit instances and queries were general attribute-value pairs, 
while in our work instances are described by keyword sets (or 
sparse boolean vectors).  Also our system automatically 
determines which attributes (keywords) are important whereas in 
Rabbit the user explicitly adds and removes attributes.  
More recently there has been a good deal of work on systems for 
querying databases of digital images.  Much of the work has been 
based on very low-level attributes of images, such as size and the 
mean brightness of pixels.  The basic assumption here is that if, 
for example, a user is looking for an image of a sunset, then many 
sunset images will have similar attributes (i.e., the cluster 
hypothesis of IR).  The work in this area that is most similar to 
ours is PicHunter [3].  PicHunter presents users with four images, 
the user selects zero or more of them, and then clicks “go” to get 
the next batch of images.  The main differences between our 
aquarium and PicHunter are, (1) to measure similarity between 
images, we use text keywords that were automatically extracted 
from image descriptions, rather than low-level image attributes, 
(2) the basic user commands of PicHunter are slightly more 
complicated than those of the aquarium, and (3) our interface is 
not designed for searching; we assume that user tasks may remain 
ill-defined indefinitely.  

Multi-dimensional scaling has recently been used to navigate 
small product spaces [18].  One difference between this work and 
ours is that they use a small set of dimensions crafted by a domain 
expert (e.g., design properties of in-line skates), whereas we use 
many dimensions (i.e., 3000 keywords) automatically extracted 
from text descriptions.  Their goals and assumptions about user 
behavior, however, are very similar to ours. 
The scatter/gather technique of information retrieval [5, 13] is 
similar to ours.  The technique gathers text summaries of clusters 
of documents, and allows users to browse them at different levels 
of granularity.  Scatter/gather supports the exploration of a topic 
structure to aid in refining an ill-defined problem.  The main 
differences between scatter/gather and opportunistic exploration is 
that we assume that the problem will always be ill-defined, and 
that we automatically determine the level of granularity based on a 
history of very simple user operations.  
Little work has been done on visualizing large product spaces.  
Much of what has been done is directly based on physical world 
metaphors (e.g., browsing music stores by creating virtual aisles, 
walls, doors, and record bins [12]).  This approach adopts all of 
the disadvantages of the physical world without adopting any of 
the advantages of the online world.  As one critic put it [8], “Most 
metaphor abuse online comes from reinventing the bad bits of the 
physical world simply for the sake of familiarity.”  Our aquarium 
metaphor is simple, yet takes full advantage of the capabilities of 
online spaces.  
The main goals of our work are very similar to those of 
information landscapes [4, 14]: 

•  give users access to all information and allow them to find 
their own emergent structures, 

•  simultaneously support the best of searching and browsing in 
a single, simple user interface [15], and 

•  enable the journey through an information space to be 
meaningful [17]. 

Our work differs from information landscapes in that (1) we work 
with photographs while they work with text, (2) we never make 
explicit the relationships between items, even when viewing very 
small subsets of items, and (3) we bring items to the user while 
they allow the user to move to the items.  

5.2 Future Work 
We have discussed three kinds of similarity measures.  We have 
yet to implement profile or demographic similarity.  There are 
many other kinds of similarity to be considered as well; e.g., those 
based on consumer intentions such as gardening or moving [6]. 
Next, we would like to formalize our navigation algorithm and 
generalize it to real-valued dimensions such as price and size.  We 
also need to define key performance metrics for opportunistic 
exploration so that different navigation algorithms can be 
evaluated on large corpora with many users. 
We conducted an initial usability test on 12 users.  Each user 
performed two ill-defined shopping tasks, one using the aquarium 
and one using Wal-Mart’s Web site.  While the results are largely 
inconclusive, we found that users are inclined to search, browse, 
or explore when shopping, and that different user interfaces have 
little affect on that inclination; i.e., shopping behavior may be a 
personality trait.  We also found that users are uncomfortable with 
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only pictorial feedback from the system and strongly preferred to 
have the top set of keywords displayed as they shop.  In fact, users 
of the aquarium often used its keyword search feature or directly 
manipulated word weights, rather than clicking on pictures.  A 
good deal of user testing and interface refinement is needed if the 
aquarium is to be usable to a broad audience. 

6. SUMMARY 
We have characterized a new class of user behavior called 
opportunistic exploration and differentiated it from browsing and 
searching.  We designed a novel visual metaphor, called an 
aquarium, which is well suited to opportunistic exploration.  
Lastly, we implemented an aquarium using information retrieval 
techniques and demonstrated its use on a collection of 12,000 
consumer products. 
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